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Abstract: This paper addresses the problem of monitoring the infant and child mortality from point referenced 

data. Indicators of the determinants of child survival based on Mosley and Chen framework are derived and 

used to model the spatial distribution of infant mortality. Spatial generalised linear model which assumes a 

Bernoulli distribution to model the indicator determinants of child survival. A smooth map of the predicted 

values at both sampled and the un sampled is produced. We find evidence of spatial autocorrelation in the data 

and the smooth map indicates the hot spot of infant mortality where more resources are needed to attain the 

millennium development goal four. 

Keywords: Infant mortality; Indicators; Geostatistics; Spatial Generalized Linear models; 

Bayesian Spatial Modelling; Mapping. 

 

I. Introduction 
More than 10; 000 new-born babies die each day from health problems that can either be prevented or 

treated. Infant mortality, the probability of dying between birth and exactlyone year of age is considered a 

standard indicator of societal well being throughout the world. The rates of infant mortality can reflect levels of 

social and economic development, levels of care and the effectiveness of preventive programs as well as post 

birth services to both mothers and their children (Fukuda et al., 2004).In Kenya, approximately eight out of 

every 100 children born die before their fifth birthday, representing a huge wastage of potential manpower. 

From figures of 119 death per 1; 000 live births in 1969 to 88 per 1; 000 in 1979; declining further to 66 per 1; 

000 in1989; the national infant mortality rate has not shown any evidence of improvement CBS et al. (2010). 

Studies on infant and child health have generally followed the Mosley and Chen conceptual framework 

(Mosley and Chen, 1984), classifying risk factors into four pri-mary categories: socio-economic; demographic; 

biological; and environmental factors (Mustafa and Odimegwu, 2007; Omariba et al., 2007; Ikamari, 2000; 

Hobcraft, 1993; Mutunga, 2007). Some of the key socio-economic and demographic determinants of in-fant 

death identified often in the literature are mother’s religion, education, occupation and socio-economic status 

(Balk et al., 2004; Gemperli and Vounatsou, 2003; Gemperli et al., 2004; Dansu and Asiribo, 2007; Hill et al., 

2001; Mustafa and Odimegwu, 2007; Hobcraft, 1993; Kaduuli, 1988, 2007; Kalipeni, 1993; Ngianga-

BakwinKandala; Chen Ji and Cappuccio, 2007; Kazembe et al., 2007; Govindasamy and Ramesh, 1997). Proxi-

mate/biological determinants of infant mortality have included the place of delivery, mode of delivery, 

gestational age, weight of child at birth, vaccination, and birth spacing. Of these proximate determinants, breast 

feeding has consistently been described as a key pre-dictor of infant survival (Butz and Habicth, 1982; Mustafa 

and Odimegwu, 2007; Omariba et al., 2007; Hafsa et al., 2009). Studies in Kenya and other regions in Sub-

Saharan have also attributed the increase in infant and child mortality to increase in HIV prevalence over the last 

two decades (McElroy et al., 2001; CBS et al., 2010). 

The need to account for spatial dependency and heterogeneity when analysing data has been mentioned 

extensively in the literature (Kalipeni, 1993; Gemperli and Vounatsou, 2003; Balk et al., 2004; Gemperli et al., 

2004; Dansu and Asiribo, 2007). Accounting for spatial autocorrelation when analysing spatially aggregated 

data has been seen to improve both parameter estimation and prediction. Spatial prediction has largely been 

based onthe assumption that points that are closer are more correlated than points far apart Tobler (1979) first 

law of Geography. 

This study utilizes a Bayesian spatial logistic regression approach to demonstrate how the geospatial 

models proposed by (Diggle et al., 1998) can be adopted to model point referenced infant survival data. Despite 

being computationally intensive and faced with challenges in achieving convergence in certain instances, 

Bayesian MCMC approaches are currently, the most practical to spatial prediction, the primary goal in 

geospatial models (Diggle et al., 1998). In addition, adjusting for the socio-economic, demographic, biological 
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and environmental indicators, this paper also develops a risk map of infant death in Kenya. 

This paper is divided into five sections. The first is a description of the status of infant mortality in 

Kenya and an explanation of the place of geospatial models in statistical literature. The second section gives a 

brief description of Spatial generalized linear Models (SGLMs) and the use of Bayesian modelling approaches. 

The data and the model formulated are described in Section 3.2, followed by a presentation of the results and 

findings of the study in Section 4. The final section of this paper discusses the findings of this paper in relation 

to others in the literature. 

 

II. Bayesian Geostatistical Modeling 
In Demographic and Health surveys, data is available at sampling sites xi, i = 1,…,n; where the 

response variable Yi (in this case infants deaths) is observed. At each location xi, the response variable Yi is 

associated with a covariates vector Z = (zi1; zi2,…,zik); where k is the number of covariates. Geospatial models 

approaches mainly account for spatial dependence in the response or covariates to predict risk of infant death at 

the un-sampled areas. 

 

2.1 Model Description 

Generalized Linear Models (GLMs), developed by Nelder and Wedderburn in 1972; allow for 

regressions when responses are distributed as one of the members of the exponentialfamily (Nelder and 

Wedderburn, 1972). In GLMs, the response variables Y1,…,Yn are assumed to be mutually independent with 

expectations µi, i = 1,….,n, related to a linearpredictor by the equation 

( ) 0
1

k
g Zi j ij

j
   


 

where g is a known function called the link function and j are the regression coefficients. An important extension 

of GLMs is the Generalized Linear Mixed Model (GLMM) Breslow and Clayton (1993); Lee and Nelder (1996) 

in which the response variables Y1,….,Yn are assumed to be mutually independent conditionally on the realized 

values of a set of latent variables U1,….,Uq. In GLMMs, the conditional expectations 

 

µi = E(Yij|U1 = u1,….,Uq = uq) 

are related to the linear predictors by 
k

g(μ ) = β + β Zi j ij0
j=1

, where g(.) is the link function as in GLMs. Spatial 

generalized linear mixed models (SGLMs) are GLMMsin which the latent variables U1…,Uq are derived from a 

stationary spatial Gaussian stochastic process, S; with mean 0; variance 
2
 and correlation function ρ(x,; x

’
) = 

corr(S(xi), S(x
’
i)) (Diggle et al., 2002; Ben-Ahmed et al., 2010). In the GLSM, the response variables Y1…,Yn 

are assumed to be mutually independent conditionally on S(Diggle et al., 2002). Such a process is said to be 

isotropic if the covariance and correlation functions are dependent on the Euclidean distance, h =||x-x’||, between 

locations x and x’ and not direction. The conditional expectations µi = E(Yi|S(xi)) are given by

( )
i

S x
k

g(μ ) = β + β Zi j ij0
j=1

where g(.) is the link function as in GLMs. A general issue in such models concerns 

the choice of the parametric family of ρ(h)with a good fit to the data (see Banerjee et al., 2003; Chiles and 

Delfiner, 1999). In most applications(h) is assumed monotone non-increasing in h; with a scale parameter ɸ. 

 

2.2 Inferenceand Prediction 

The likelihood functions for GLSM are generally not expressible in closed form but only as integrals of 

high dimension. Standard methods of approximating such integrals are of unknown accuracy in geostatistical 

setting and so Markov Chain Monte Carlo (MCMC)algorithms have been suggested for the computation of 

GLSM parameters and prediction (Diggle et al., 2002). 

Letting θ denote the set of parameters that define the covariance structure of our GLSM model, the 

MCMC algorithms we use proceeds as follows: we first sample from the conditional distribution of given the 

process S(.). We then sample from the conditional distribution of S(.) given Y,θ and β); where Y = 

(Y1,…,Yn)’, and finally, from the distribution of β given the process Y and S(.). We then use the Langevin-

Hastings algorithm, known to yields more efficient results than the random walk Metropolis algorithm 

Christensen and Waagepetersen. (2002), to simulate from the posterior distribution of S(.) given Y. When 

follows a uniform prior and  δ
2
 a scaled inverse- χ

2
 prior distribution, the joint posterior distribution is given 

as 

f(β, S,δ
2
, ɸ|Y) α f( β, S; Y)f(S|δ

2
,ɸ)f(δ

2
)f(ɸ), 

wheref(S|δ
2
,ɸ)is the distribution of the spatial random effects, and f(β, S,  δ

2
,  ɸ|Y) is the posterior distribution 

of the parameters obtained by the Langevins algorithms. 

For prediction, if Y0 is a vector of the responses at new, unobserved, site x0i, i =1,….,n0, the Bayesian predictive 



Spatial Modelling and Mapping of Socio-demographic Determinants ofInfant Mortality in Kenya 

DOI: 10.9790/0837-2103028491                               www.iosrjournals.org                                             86 | Page 

distribution of  Y0given 2ˆ ˆ ˆˆ, , ,S    is given by  

2 2

0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( | , , , ) ( | , ) ( | , , )f Y S f Y S f S S dS       , 

 

where ̂ , 
2̂ and ̂ are the maximum likelihood estimates of the corresponding parameter and S0 denotes the 

signal at the new sites. 

Simulation-based Bayesian spatial prediction is performed by consecutive drawing samples from the 

posterior distribution, the distribution of the spatial random effects at new locations and the Bernoulli-

distributed predicted outcome. MCMC algorithms used in this work are provided within the packages geoR and 

geoRglm, (Christensen and Ribeiro Jr, 2002), freely available within the open-source R statistical software 

(www.cran.r-project.org) 

 

III. Data Description And Model Formulation 
3.1 TheData Description 

The data used in this study was the 2003 Kenya Demographic and Health Survey (KDHS). The sample 

was selected using a two-stage stratified random sampling design that relied on a sampling frame maintained by 

the CBS. Fieldwork conducted between April and September 2003 and achieved an overall response rate of 97% 

of households and 96% of women aged 15-49 who were eligible for an individual interview. The interview 

included a retrospective maternity history that collects data on date of birth, survival status, and age at death for 

all children each woman has given birth to. 

The 2003 DHS covered 8,195 women aged 15-49 and 3578 men aged 15-54 from 400 Enumeration 

Areas (EAs) throughout Kenya. The survey collected detailed information relating to demographic, child health 

care and GIS coordinates for EA’s in both urban and rural areas. We aggregated the data into proportions of 

infant deaths and covariates at enumeration area (EA) level and subsequently used them to predict IMR at 

unsampled locations. Aggregation of point referenced data into census tracts or regions are reflective of data 

collection and/or modelling rather than administrative units are modifiable and contain artefacts related to 

degree of spatial aggregation or replacement of boundaries. Based on the Mosley and Chen analytical 

framework Mosley and Chen (1984), existing literature and constrained by variables measured in the KDHS, the 

variables used in this study are presented in Table 1. 

For spatial modelling, the data were aggregated for each of the 400 sampled EA’s and the outcome 

variable, proportion of infant deaths, along with other aggregated EA level predictors calculated. The map 

surface of Kenya was divided into 10,000 pixels of approximately 25 km 25 km, for which model predictions of 

infant mortality rates were made, excluding areas for which no census data apply, such as nature reserves and 

game parks. Socio-economic and demographic data were extracted from 2003 KDHS data for each of the 

sampled EA’s and for each of the pixels. The value for each pixel was calculated by summing the variable 

according to there respective category values over the EA in proportion to the number of births observed in the 

EA. Theaggregated EA level variables considered were:the Proportion mothers aged less than 19 years at first 

birth; the Proportion infants never breast feed, the Proportion births interval less than 2 years; the Proportion of 

births of order one; the Average Wealth index and the Proportion mothers with no formal education.  

 

Table 1: Individual level determinants of infant survival 
Socio-demographic Socio-economic Environmental Proximate 

Mother’s migration status Mother’s education Source of water Place of delivery 

Sex of household head Mother’s   occupation Toilet facility Sex of child 

Mother’s age at first birth Socio-economic status Cooking fuel Mother’s  age  at birth 

Religion Partner’s education Mother smokes Birth order 

Region   Birth size 

   Birth interval 

 

3.2 Model Formulation  

The observations of the response variable Yi; i = 1,….,400, represent the number of observed cases in 

each of the 400 clusters sampled. All possible covariates were first tested in a non-spatial univariate logistic 

regression models to determine their potential associated with infant survival. Variables that were not associated 

with infant survival in the non-spatial models were not explored further. Only those variables found to be 

significant were incorporated in the prediction model. 

To account for the unexplained spatial variation of infant mortality, we postulate a stationary Gaussian 

process S with mean 0; variance 
2
 and an isotropic correlation function . Conditional on S(xi); the number, yi; of 

infant deaths out of ni live births from the i
th

 EA were assumed to be a realization of independent Binomial 

random variable with probability of infant death pi: The Bayesian geostatistical linear model implemented was 
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of the form yi~bin(ni, pi); with 

0log ( ) ' ( )i i iit p Z S x                                                                                                        3.1 

where β= (β1, … ,βn)
’
, is a vector of fixed parameters, Zi

’
 a vector of predictor values and S = {S(x1),….,S(xn)} 

is a stationary Gausssian process with mean function µ(x) = E[S(x)]; covariance function γ(h) = Cov{S(x), S(x + 

h)} and exponential correlation function ρ(θ)= δ
2
exp(dij/ɸ); is the parameter that measures the rate of correlation 

decay, and dij the distance between the locations i and j: 

The parameters in the above model wereestimated using the Bayesian methodology described by 

Diggle et al. (1998). Independent vague uniform priors were chosen for the parameters β; δ
2
and ɸ and, following 

suggestions by Ribeiro Jr et al. (2003), values of were selected from a discrete set of values to cover the 

different degrees of mean square differentiability for the process S: Five fixed values {0.1; 0.2; 0.3; 0.4; 0.5} 

were tried for δ . For each one of the fixed values, the Markov chain was run for 5,000 iterations to get a sample 

of 500 values from the posterior distributions forβ, δ
2
 and ɸ. Each sample taken every 10-th iteration after the 

time at which we judged that the chain has converged. Convergence occurred generally after about 10,000 

samples, on the basis of inspection of sample traces. 

 

IV. Results 

4.1 Logistics Regression Analysis for Aggregated Data 

Table 2 presents the results of a non-spatial logistic regression analysis for aggregated EA level 

covariates. The results indicate that the proportion of infants never breastfed, the proportion of births of interval 

less than 2 years, the average wealth index, the province of residence and the dominant ethnic community in 

cluster are key factors associated with infant death. All these predictors, except the Province of residence, were 

include in the subsequent analysis. 

 

Table 2: Infant mortality by selected (aggregated) variables 

Model term AIC Deviance df p-value 

Null 1209 317.64 379   

Proportion of mothers < 19 years at first birth 1210 0.7 1 0.4033 

Proportion of infants never breast feed 276.8 40.84 1 < 0:001 

Proportion of births interval less than 2 years 1193 17.73 1 < 0:001 

Proportion of births order one 1209 1.12 1 0.2892 

Average Wealth index 1172 38.44 1 < 0:001 

Proportion of mothers with No formal education 1210 0.52 1 0.4728 

Province of residence 1197 25.283 7 < 0:001 

Dominant ethnic community in cluster 1192 44.958 14 < 0:001 

 

4.2 Spatial Logistics Regression Analysis For Aggregated Data  

Table 3 presents results of the best fitting models identified for both the non-spatial (frequentist) logistic 

regression and the corresponding (Bayesian) generalized linear spatial model. The fixed effects parameters for 

both models showed well known patterns linking infant mortality to the covariates selected. Five variables which 

were significantly correlated with infant mortality in the univariate, non-spatial, logistic regression did not retain 

their statistical significance and were dropped in the final model. The four covariates that retained their 

significance in the spatial logistic regression analysis were Breast feeding, Births interval, Wealth index and 

Ethnicity. Adjusting for the effect of the other covariates, the risk of infant death increased significantly with 

both the proportion of infant never breastfed (AOR= 7.45, 95% CI=3.90-14.01) and the proportion of births 

within intervals of less than 2 years (AOR=1.20, 95% CI = 1.09-1.34). Areas with higher aver-age Wealth index 

had significantly lower rates of infants mortality (AOR=0.76, 95% CI =0.71-0.90). Risk of infant death was 

significantly lower for Kikuyu (AOR= 0.61, 95% CI=0.50-0.73), Kamba (AOR= 0.63, 95% CI=0.47-0.84) and 

Kalenjin (AOR= 0.70, 95% CI=0.50-0.99) communities compared to the Luo community. In general, confidence 

intervals were considerably narrower in the case of the spatial model as compared with the non-spatial. The 

adjusted relative risk associated with each of the continuous covariates 

(breast feeding, birth interval and wealth index) were also smaller for the spatial model. With regard to Bayesian 

inference, an inspection of the sample traces plots for θ=(δ
2
,ɸ ) and β= (β0,β1,β2,…..,β17) obtained by fitting of 

the (SGLM) model, shows a reasonable degree of convergence to a stationary distribution (see Figure 2). Each 

trace consists of 500 values sampled from the posterior distributions of θ and β. The histograms of the empirical 

posterior distributions of the parameters β1≤j≤17 show that these posterior distributions are approximately 

Gaussian (see Figure 1). The parameters δ
2
 and ɸ in Table 3 measure the variance of the spatial process and the 

rate of correlation decay (smoothing parameter), respectively.The results indicates a small value of with 

posterior median of 0:3 (95% CI : 0:28; 0:32) suggesting a strong spatial correlation because this parameter 
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measures the range of the geographical dependency, which is defined as the minimum distance at which spatial 

correlation between locations is below 5 percent. In our exponential setting it can be calculated as 3/ɸ = 10 (10 

km; 95% CI: 9:38 10:71 km). This implies a non-vanishing correlation between all sampled points and results in 

very smooth maps for the predicted random effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Histogram showing the MCMC output every 100-th iteration. 

 

Table 3: Parameter estimates, relative risk and 95% confidence/credible intervals fromnon-spatial and spatial 

logistic regression models of probability of infant deaths 

  

Non-spatial Model Spatial Model   

(95% Confidence Interval) exp( ) (95% Credible Interval) exp( ) 

Intercept -0.92(-1.27,-0.57) 0.4 -0.96(-1.37, -0.55) 0.38 

Breast feeding 2.61(1.73,3.49) 13.6 2.01(1.36, 2.64) 7.46 

Births interval 0.2(0.02,0.38) 1.22 0.19(0.09, 0.29) 1.21 

Wealth index -0.18(-0.26,-0.10) 0.84 -0.28(-0.34, -0.22) 0.76 

Ethnicity         

Luo (Ref) 1       

Embu -0.7(-1.80,0.40) 0.5 -0.5(-1.25, 0.22) 0.61 

Kalenjin -0.49(-0.84,-0.14) 0.61 -0.35(-0.69, -0.01) 0.7 

Kamba -0.55(-0.90,-0.20) 0.58 -0.47(-0.76, -0.18) 0.63 

Kikuyu -0.69(-0.96,-0.42) 0.5 -0.5(-0.7, -0.31) 0.61 

Kisii -0.61(-1.00,-0.22) 0.54 -0.65(-0.89, -0.38) 0.52 

Kuria -0.74(-1.96,0.48) 0.48 -0.3(-1.94, 1.35) 0.74 

Luhya -0.41(-0.68,-0.14) 0.66 -0.15(-0.38, 0.07) 0.86 

Masai -0.55(-1.08,-0.02) 0.58 0.07(-0.39, 0.53) 1.07 

Meru -0.7(-1.19,-0.21) 0.5 -0.31(-0.68, 0.05) 0.73 

Mjikenda -0.65(-1.02,-0.28) 0.52 -0.04(-0.32, 0.24) 0.96 

Somali -0.56(-0.89,-0.23) 0.57 -0.28(-0.59, 0.04) 0.76 
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Taita/Taveta -0.3(-1.10,0.50) 0.74 0.43(-0.08, 0.94) 1.54 

Turkana -0.87(-1.63,-0.11) 0.42 -0.51(-1.12, 0.08) 0.6 

Others 0.11(-0.69,0.91) 1.12 0.56(0.12, 1.02) 1.75 

 δ
2 

    1.34(1.17,1.55)   

 ɸ     0.30(0.28,0.32)   

Figure 3 presents the smoothed risk map of infant mortality in Kenya adjusting forsocio-demographic 

indicators. Then map shows some considerable variation in the predicted values with high mortality rates 

clustering in Nyanza region and low values in central Kenya, part of Rift valley and Eastern provinces. The 

figure also presents the mean estimates of the residual smooth spatial effects and the corresponding predicted 

variances of the probability of infant death map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Time series plots showing the MCMC output every 100-th iteration 

 

 
Figure 3: Spatial prediction of distribution of Infant Mortality Rate in Kenya: (left) Risk of infant death with 
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Brown indicating high risk and Purple indicating low risk; (right) the predicted variance of probability of infant 

death. 

 

 

V. Discussion 

In this study Bayesian spatial models were fitted to assess the geographical patterns and determinants 

of infant mortality in Kenya. Results confirmed strong geographical dif-ferences in mortality risk and the 

importance of a number of risk factors such as breast feeding, birth interval, average wealth index and 

community in which a child is born. The relationships highlighted above have some very important policy 

implications at the re-gional and community levels. Consistent with other studies, breast feeding, birth interval, 

socioeconomic status and the community in which a child is born are the most important determinant of infant 

mortality which is consistent with the literature (Mustafa and Odimegwu, 2007; Omariba et al., 2007; Ikamari, 

2000). 

The last two decades have significant growth in the development and application of spatial statistics in 

epidemiological and public health. These developments have included: the description and estimation of spatial 

patterns; the modelling of data in the presence of spatial correlation; and spatial prediction at unobserved 

locations. For Gaussian data, the generalized least squares (GLS), maximum likelihood and restricted maximum 

likelihood approaches have been employed extensively giving reliable estimates of the regression coefficients 

conditional on the covariance parameters. For non-Gaussian data, on the other hand, statistical estimation has 

relied primarily on the theory of generalized lin-ear mixed models (GLMM). For large point-referenced spatial 

data, GLMMs are highly parameterized and estimation is generally hampered by computational problems. Un-

der the frequentist paradigm, therefore, Penalized Quasi-Likelihood methods have been employed extensively as 

they are pervasive in standard statistical software package. Estimates, especially those for the covariance 

parameters, are however biased. Bayesian MCMC methods on the other hand have given unbiased estimates of 

the parameters and the associated standard error. Bayesian methods have also been cited as having 

computational advantages for problems larger than the ones the maximum likelihood methods canhandle. 

Since our results depend on areas sampled, the limitations of this study hinges primarily on the sampled 

areas. Only a few areas were sampled in North eastern and upper Eastern regions due to large traveling distance 

and low population density in these areas. This may lead to a bias with regard to prediction at un-sampled 

locations. Other limitation include the lack of population density data and infant level HIV prevalence data at 

sampled areas which may significantly confound the predicted results. Despite the limitations discussed above, 

we feel that this study fills a gap in knowledge of geographical variations of infant mortality in Kenya. The 

maps identify areas of increased risk and patterns which have important implications for health policy aimed at 

reducing all cause infant mortality by two thirds by 2015. 
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